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Solar UV (UV)-B-radiation exerts both beneficial and adverse 
effects on human health. On the one hand, it is the most 
important environmental risk factor for the development of 
non-melanoma skin cancer [NMSC; most importantly basal 
(BCC) and squamous (SCC) cell carcinomas], that represent 
the most common malignancies in Caucasian populations. 
On the other hand, the human body’s requirements of 
vitamin D are mainly achieved by UV-B-induced cutaneous 
photosynthesis. This dilemma represents a serious problem in 
many populations, for an association of vitamin D-deficiency 
and multiple independent diseases including various types of 
cancer has been convincingly demonstrated. In line with these 
findings, epidemiologic and laboratory investigations now 
indicate that vitamin D and its metabolites have a risk reducing 
effect for NMSC. Potential mechanisms of action include 
inhibition of the hedgehog signaling pathway (BCC) and 
modulation of p53-mediated DNA damage response (SCC). 
As a consequence of these new findings it can be concluded 
that UV-B-radiation exerts both beneficial and adverse effects 
on risk and prognosis of NMSC. It can be assumed that many 
independent factors, including frequency and dose of UV-B 
exposure, skin area exposed, and individual factors (such 
as skin type and genetic determinants of the skin’s vitamin 
D status and of signaling pathways that are involved in the 
tumorigenesis of NMSC) determine whether UV-B exposure 
promotes or inhibits tumorigenesis of NMSC. Moreover, these 
findings may help to explain many of the differential effects 
of UV-B radiation on risk of NMSC, including variation in the 
dose-dependent risk for development of SCC in situ (actinic 
keratosis, AK), invasive SCC, and BCC. In this review, we analyze 
the relevance of the vitamin D endocrine system (VDES) for 
tumorigenesis, prevention, and treatment of NMSC and give 
an overview of present concepts and future perspectives.
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Introduction

The important function of the skin as the site of photosynthesis 
of vitamin D

3
 is well known.1-4 The presence of the vitamin D 

receptor (VDR) in most cell types of the skin, including kera-
tinocytes, hair follicle cells, melanocytes, fibroblasts and others 
identifies the human skin as a target of biologically active vita-
min D compounds and strongly indicates a major relevance of 
vitamin D for skin physiology including signaling pathways that 
are of relevance for tumorigenesis of non-melanoma skin cancer 
[NMSC; most importantly basal (BCC) and squamous (SCC) 
cell carcinomas].1-8 It has been demonstrated that 1,25-dihy-
droxyvitamin D

3
 [1,25(OH)

2
D

3
, calcitriol] the biologically active 

natural metabolite of vitamin D, has great impact on keratino-
cyte growth and differentiation and consequently is, together 
with calcipotriol and other analogs, successfully used for the 
treatment of the hyperproliferative skin disorder psoriasis.9,10

Solar and artificial UV (UV)-B-radiation (280–320 nm) 
exerts both beneficial and adverse effects on human health.1-6 On 
the one hand, UV-B-radiation is the most important environ-
mental risk factor for the development of NMSC, that represent 
the most common malignancies in Caucasian populations.1-6 On 
the other hand, the human body’s requirements of vitamin D 
are mainly achieved by UV-B-induced cutaneous photosynthe-
sis.1-8 This dilemma represents a serious problem in many popu-
lations, for an association of vitamin D-deficiency and multiple 
independent diseases including various types of cancer has been 
convincingly demonstrated.1-6,11,12 In line with these findings, 
clinical, epidemiologic, animal and in vitro investigations now 
indicate that vitamin D and its metabolites have a risk reduc-
ing effect for NMSC.5-8 Potential mechanisms of action include 
inhibition of the hedgehog signaling pathway (BCC) and mod-
ulation of p53-mediated DNA damage response (SCC). The 
functional integrity of the VDES can be affected at different lev-
els. Relevant parameters that can be analyzed include vitamin 
D status (most importantly 25(OH)D serum concentration), 
expression and single nucleotide polymorphism (SNP) analysis 
of VDR, enzymes involved in the VDES (CYP2R1, CYP27A1, 
CYP27B1, CYP24A1, and vitamin D) binding protein (DBP, 
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metabolized in the liver by CYP2R1 or CYP27A1 to 25-hydroxyvi-
tamin D [25(OH)D] and then in the kidney or in other tissues 
by CYP27B1 to the biologically active metabolite 1,25-dihy-
droxyvitamin D [1,25(OH)

2
D].1,3,4 In the blood, vitamin D 

metabolites are mostly bound to a specific transport protein, 
the vitamin D binding protein (VDBP, GC).1,3,4 1,25(OH)

2
D is 

metabolized in target cells at least in part by 1,25(OH)
2
D-24-

hydroxylase (CYP24A1), resulting in a specific C-24 oxidation 
pathway to yield the biliary excretory product calcitroic acid.1,3,4 
It is well accepted that the serum 25(OH)D concentration rep-
resents the best parameter to determine a person’s vitamin D sta-
tus.1,3,4 Individual factors that predispose for a person’s vitamin 
D status, such as skin type and UV exposure, have been identi-
fied.1,3,4 Vitamin D deficiency is common in many populations1,3,4 
and low serum 25(OH)D concentrations are associated with an 
increased incidence and an unfavorable outcome of multiple dis-
eases, such as various types of cancer, infectious, cardio-vascular, 
and autoimmune diseases.1-4 At present, epidemiologic studies do 
not show a clear relationship between serum 25(OH)D concen-
tration and risk of NMSC.7,8 However, the interpretation of these 
epidemiologic studies is difficult due to many limitations that 
include low case numbers and potentially confounding factors 
such as UV-B radiation. In many of these investigations, that 
are difficult to compare due to differences in the study design 
(including use of different parameters to determine vitamin D 
status, e.g., analysis of 25(OH)D and/or 1,25(OH)

2
D serum 

concentrations; use of different assays to measure 25(OH)D 
serum concentration; different location/latitude of study popula-
tions) the positive relationship of UV exposure with both vita-
min D status and NMSC risk makes it difficult to interprete the 
findings. A nested case-control study (Osteoporotic fractures in 
men, MrOS) in ambulatory elderly men with (n = 178) or with-
out (n = 930) NMSC showed that individuals with the highest 
baseline serum 25(OH)D concentrations (> 30 ng/ml) had 47% 
lower odds ratios for NMSC (95% confidence interval, 0.3–0.93; 
p = 0.026), compared with those with the lowest 25(OH)D con-
centrations.19 The authors concluded that high 25(OH)D levels 
may be associated with a reduced risk for NMSC, and that a 
diagnosis of NMSC does not indicate an adequate vitamin D 
status. However, some epidemiologic studies do not support the 
hypothesis that an adequate vitamin D status reduces the risk 
of NMSC. A prospective investigation evaluated the association 
between baseline plasma 25(OH)D levels and the risk of incident 
SCC and BCC among 4,641 women from the Nurses’ Health 
Study (NHS) and the NHS II with 510 incident BCC cases and 
75 incident SCC cases.20 In that study, plasma 25(OH)D levels 
were positively associated with risk of BCC after adjusting for age 
at blood draw, season of blood draw, lab batch, hair color, burning 
tendency, the number of sunburns, and UV B flux of residence 
at blood collection. Women in the highest quartile of 25(OH)
D had more than 2-fold increased risk of BCC compared with 
women in the lowest quartile (OR = 2.07, 95% CI = 1.52–2.80, 
P for trend < 0.0001). The authors also found a significantly posi-
tive association between plasma 25(OH)D levels and SCC risk 
after adjusting for the same covariates (OR, highest vs. lowest 
quartile = 3.77, 95% CI = 1.70–8.36, P for trend = 0.0002).  

GC). In this review, we analyze the relevance of the vitamin D 
endocrine system (VDES) for tumorigenesis, prevention, and 
treatment of NMSC and give an overview of present concepts 
and future perspectives.

Epidemiology and Photocarcinogenesis of Basal 
Cell Carcinoma (BCC) and Cutaneous Squamous 

Cell Carcinoma (SCC): The Two Most Predominant 
Types of Non-Melanoma Skin Cancer (NMSC)

Epidemiology of basal cell carcinoma (BCC) and cutaneous 
squamous cell carcinoma (SCC). Cutaneous squamous cell 
carcinoma (SCC) and basal cell carcinoma (BCC) represent the 
two types of non-melanoma skin cancer (NMSC) with the high-
est incidence and prevalence rates worldwide.2,5,6,13 While the 
incidence of skin cancer has dramatically increased during the 
last decades, it is now accepted that the reasons for this develop-
ment are multifactoral.2,5,6,13 It has been speculated that besides 
the age pyramid and other factors, cultural changes that result in 
increased UV-exposure, may be of particular importance.2,5,6,13 
BCCs and SCCs show a locally aggressive and invasive growth 
pattern, but in comparison with SCCs (metastatic potential 
in about 5% of all cases), BCCs only very rarely metastasize 
(0.003–0.1%). Actinic keratoses (AK) are precursors of SCC 
and are now classified as SCC in situ. Epidemiological stud-
ies have convincingly shown that living in parts of the world 
with increased erythemal UV or high average annual bright sun 
results in increased risks of SCC and BCC, with the greatest 
increased risk for SCC.5,14 These investigations are in line with 
studies of personal exposure, demonstrating that higher levels of 
occupational and total UV exposure increase the risk for NMSC, 
with greater correlation for SCC than for BCC. “Intermittent” 
sun exposure, such as high exposure only at weekends or holi-
days tends to be associated to some extend with increased risk 
of BCC.5,14 Sunburn at any age increases the risk of BCCs and 
SCCs, with greater correlation for BCC than for SCC.5,14,15 The 
age at which high UV exposures occur may also be of impor-
tance, since there is epidemiological evidence showing that the 
risks of all major skin cancers are reduced by half in people who 
migrate to a high solar UV environment, like Australia after the 
age of 10 y, as compared with people who live since birth in a 
high solar UV environment.5,16,17 Pale skin increases the risk of 
SCC and BCC. SCCs and BCCs tend to occur in constantly 
sun-exposed skin areas like the face, ears, neck and back of the 
hands, with greater association for SCC than for BCC. Standard 
therapy for both skin cancers is surgical excision. Due to a high 
percentage of local and systemic recurrence, dermatologists have 
been looking for chemopreventive and/or chemotherapeutic 
agents for years. Interestingly, it has been shown that vitamin 
D compounds have chemopreventive effects at least for BCCs. 
The combination of retinoids and calctriol has been reported 
to be effective in the chemotherapy of cutaneous malignancies, 
including BCCs and SCCs.18

Vitamin D status in BCC and SCC. Vitamin D can be 
absorbed from the diet or synthesized from 7-dehydrocholesterol 
(7-DHC) in the skin by the action of sunlight (UV-B).1,3,4 It is 
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Expression of vitamin D receptor (VDR) in BCC and SCC. 
Effects of 1,25(OH)

2
D

3
 on target cells are at least in part medi-

ated via its corresponding intranuclear receptor (VDR), which 
belongs to the superfamily of transacting transcriptional regula-
tory factors, including the steroid and thyroid hormone recep-
tors as well as the retinoid-X receptors (RXRs) and retinoic acid 
receptors (RARs).3,4,28 Different classes of vitamin D response 
elements (VDRE) have been characterized in target genes that 
are activated either by VDR-homodimers or by heterodimers 
of VDR and RXRs.3,4,28 It was demonstrated that ligands of 
RXRs (e.g., 9-cis retinoic acid) can enhance the transcriptional 
activity in 1,25(OH)

2
D

3
-mediated nuclear signaling pathways. 

Thus, there are different vitamin D signaling pathways that are 
determined by the VDR, its dimerization-partner, correspond-
ing ligands, and the nature of the VDRE.28 Increasing evidence 
now indicates that the VDR protects against the development of 
NMSC.29 It has been shown that mice lacking the VDR are sen-
sitive to epidermal tumor formation induced by the carcinogen 
DMBA or following UV radiation (UVR).29-31 The epidermis of 
VDR null mice shows hyperproliferation of keratinocyte cell lay-
ers, and distortion of hair follicles, structures from which these 
carcinogen-induced skin tumors may develop.29-31

Strong VDR immunoreactivity and mRNA expression has 
been reported both in BCCs32-34 (Fig. 1) and SCCs.34,35 An in 
vitro investigation using real-Time RT-PCR technology showed a 
statistically highly significantly increased ratio of VDR/GAPDH 
gene expression in BCCs (median: 16.54) and SCCs (median, 
37.00) as compared with normal human skin (median, 0.00021 
for the BCC study and 0.000006 for the SCC study; both p < 
0.005).33-35 Immunohistochemical in vitro investigations demon-
strate that almost every tumor cell of BCCs and SCCs reveals 
nuclear immunoreactivity for VDR.32-35 In these studies, VDR 
staining intensity was markedly stronger in both skin tumor 
types as compared with adjacent epidermis or to distant unaf-
fected epidermis of the same sections. In BCCs, VDR immuno-
reactivity was pronounced in the palisaded array of peripheral 
tumor cells.32 There was no visual difference comparing VDR 
staining pattern in the different variants of BCCs (nodular type, 
superficial type, fibrosing type) or of SCCs (poorly, moderately, 
well differentiated).32-35 Analyzing immunohistochemically the 
expression of nuclear VDR cofactors in BCCs, strong staining for 
RXR-α has been reported while in contrast, RXR-β and RXR-γ 
were not or only weakly detectable in BCCs.34 Analysis of the 
VDR heterodimerization partners suggests that selective vitamin 
D analogs activating exclusively the predominant VDR-RXR-α 
heterodimer may be most effective in the treatment of BCC with 
little risk of side effects.

When the immunohistochemical staining of VDR was ana-
lyzed in BCC and SCC for correlation with the proliferation 
marker K

i
-67, no visual correlation of labeling patterns was 

found.32-35 Heterogeneous K
i
-67 immunoreactivity with no 

visual differences between central and peripheral areas was found 
in most SCC specimens (11 of 15), although some SCCs revealed 
pronounced labeling for K

i
-67 antigen in peripheral tumor cells 

(4 of 15). Confocal laser scanning microscopy confirmed these 
results, showing that double-stained sections for VDR and K

i
-67 

In this prospective study of women, plasma 25(OH)D levels were 
positively associated with NMSC risk. The authors concluded 
that, considering that most circulating vitamin D is due to sun 
exposure, the positive association between plasma 25(OH)D and 
NMSC is confounded by sun exposure and that their data sug-
gest that one-time measurement of plasma vitamin D levels may 
reasonably reflect long-term sun exposure and predict the risk of 
NMSC.

Results of a case control study (Kaiser Permanente Northern 
California population) indicate that higher prediagnostic 
25(OH)D levels may be associated with a small increased risk 
of BCC.21 Prospective cohort studies in women published in 
199222 and in men published in 200023 using dietary question-
aires found no association between intake of vitamin D and risk 
of BCC. A prospective investigation analyzing white individu-
als of a Health maintenance organization cohort who sought 
low-bone-density or osteoporosis related advice reported that 
higher 25(OH)D serum concentrations (> 15 ng/ml) are associ-
ated with an increased risk of NMSC, although these findings 
were statistically not significant.24 Vitamin D-binding protein 
(VDBP) single nucleotide polymorphisms (SNP) affect 25(OH)
D levels and thereby may influence skin carcinogenesis.25 One 
study tested the association between two functional VDBP 
SNPs and the susceptibility to (multiple) BCCs.25 Of the 7983 
participants, 5790 (72.5%) and 5823 (72.9%) participants were 
genotyped for rs7041 and rs4588, respectively, and three haplo-
types (Gc1s, Gc2 and Gc1f) were analyzed. Two hundred and 
33 persons developed a BCC of whom 122 (52.4%) developed 
multiple BCCs during a mean follow-up of 11.6 y. In that study, 
the VDBP genotype was not associated with (multiple) BCC 
development using Cox proportional hazards and Andersen-
Gill analyses, respectively. Stratifying age groups demonstrated 
that in the youngest age-group, the A/T variant of rs7041 was 
associated with BCC development [adjusted hazard ratio (HR) 
= 1.88 (95% CI 1.10–3.20)], while homozygote Gc1s carriers 
had a significantly lower BCC risk [adjusted HR = 0.53 (95% 
CI 0.31–0.91)].25 The authors concluded that in their study, 
the VDBP polymorphisms were not associated with suscepti-
bility to (multiple) BCCs, but that age-gene interactions were 
observed.25

Some pilot studies indicate that patients with basal cell nevus 
syndrome (BCNS; Golz-Gorlin syndrome) or xeroderma pig-
mentosum, that are prone to develop BCCs and/or SCCs due 
to mutations in genes of the hedgehog signaling pathway or in 
DNA repair genes, and who therefore have to protect themselves 
consequently from UV radiation have relatively low serum con-
centrations of 25(OH)D.26,27 In a retrospective cohort study (41 
ambulatory patients with BCNS who participated in a 2-y che-
moprevention clinical trial vs. 360 population-based controls), 
23 patients with BCNS (56%) were vitamin D deficient (defined 
as a 25[OH]D level of ≤ 20 ng/mL).27 Patients with BCNS had 
mean 25(OH)D levels below those of the general population (−3 
ng/mL; p = 0.02) and were 3 times more likely to be vitamin 
D deficient (56% vs. 18%; p < 0.001). It can be concluded that 
patients with BCNS are at increased risk for vitamin D defi-
ciency, depending on their adherence to photoprotection.27
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prostate.36 There is a significant 
increase in breast cancer risk for car-
riers of Fok1 ff compared with FF 
genotype, and a significant decrease 
of prostate cancer risk for Bsm1 
Bb in comparison with bb carri-
ers.36 Little is known about VDR 
polymorphisms and the occurrence 
of skin cancer. In a study analyz-
ing SCC, the BB genotype of VDR 
was significantly associated with 
increased cancer risk (OR = 1.51).38 
Moreover, an interaction between 
the Bsm1 polymorphism and total 
vitamin D intake was observed in 
SCC patients with > 2-fold higher 
risk seen in women with the BB 
genotype and high vitamin D intake 
(OR = 2.38, p interaction = 0.08).38 
Another study suggested that the 
Taq1 polymorphism TT was asso-
ciated with an increased number 
of BCCs that developed per year, 
particulary in combination with 
skin type I and male sex.39 In 2009, 

a review and meta-analysis of 67 independent studies on the 
association between the two most studied VDR polymorphisms 
(FokI and BsmI) and cancer risk was reported. When compar-
ing FokI ff with FF carriers, a significant increase in skin cancer 
risk [SOR; 95% confidence intervals (CIs): 1.30; 1.04–1.61].40 
Analyzing the BsmI genotypes in Caucasian populations, both 
Bb and BB carriers had a significant reduced risk of skin cancer. 
In conclusion, this meta-analysis strongly supports the concept 
that VDR FokI and BsmI polymorphisms modulate the risk of 
NMSC. In a pilot study in the German population, we have ana-
lyzed the presence of several VDR polymorphisms (Apa1, Taq1, 
Bgl1) in BCC and cutaneous SCC as compared with healthy 
controls.41 Variations were observed in the distribution of VDR 
polymorphisms in the tumor groups compared with the healthy 
controls (Apa1 Aa genotype: 56.1% in BCC, 51.1% in SCC, 
45.1% in healthy controls; Taq1 Tt genotype: 58.6% in BCC, 
50.0% in SCC, 48.0% in healthy controls; Bgl1 Bb genotype: 
54.5% in BCC, 50.0% in SCC, 43.1%).41 Interestingly, there 
were associations indicating that Apa1 and Taq1 genotypes may 
be of importance for photocarcinogenesis of BCCs, but not of 
SCCs.41 These data indicate that VDR polymorphisms are of 
importance for the tumorigenesis of BCC and SCC, and may 
contribute to the differential role of UV-B radiation for the 
development of these malignancies.

Expression of CYP27A1, CYP27B1 and CYP24A1 in BCC 
and SCC. The formation of 1,25(OH)

2
D

3
, the biologically most 

active natural ligand of the VDR, is mediated through several 
main enzymes that facilitate hydroxylations of vitamin D at 
position 25 in the liver (CYP2R1, CYP27A1) and of resulting 
25(OH)D

3
 at position 1 in the kidneys (CYP27B1).3,5,6 These 

hydroxylases belong to a class of cytochrome P450 mixed function 

revealed no visual correlation of labeling patterns in both tumor 
(Fig. 2). Double-stained sections for VDR and the differentia-
tion markers transglutaminase K or cytokeratin 10 also revealed 
no visual correlation of labeling patterns. When the immuno-
histochemical staining of VDR was analyzed for correlation 
with apoptotic cells, no visual correlation of labeling patterns 
was found. In that study, all BCC and SCC specimens revealed 
single scattered terminal UTP nucleotide end-labeled apoptotic 
cells with considerable variation in their number. Distribution of 
apoptotic cells within the tumors was heterogeneous. There were 
markedly fewer apoptotic cells than VDR-positive cells. In sum-
mary, comparison of staining patterns revealed no evidence for 
strong correlation of VDR expression and apoptosis and/or cell 
proliferation/differentiation in BCC or SCC.32-35

Vitamin D receptor (VDR) polymorphisms (SNPs) in BCC 
and SCC. As outlined above, vitamin D deficiency is associated 
with various types of cancer. Functional polymorphisms (most 
importantly single nucleotide polymorphisms, SNPs) along the 
105 kilobyte VDR gene have important implications for mediat-
ing actions of 1,25(OH)

2
D

3
.36,37 The VDR gene encompasses 

two promoter regions, eight protein-coding exons namely 2–9 
and six untranslated exons (1a-1f).36,37 Many VDR polymor-
phisms have been discovered which are located in the promoter, 
in and around exons 2–9 and in the 3' UTR region.36,37 Most of 
the VDR polymorphisms, that may represent restriction frag-
ment lengths polymorphisms (RFLP), have an unknown func-
tional effect.36,37 In some cases, it has been indicated that they 
may be linked to truly functional polymorphisms elsewhere in 
the VDR gene (or in a nearby gene).36,37 Consequently, it has 
been shown that VDR polymorphisms are associated with vari-
ous malignancies, including cancers of the breast, colon, and 

Figure 1. Immunohistochemical analysis of vitamin D receptor (VDR) expression in a basal cell carci-
noma (BCC). Please note strong nuclear staining that is increased in tumor cells (↓) as compared with un-
affected overlying epidermis (↑) of human skin (labeled streptavidin-biotin technique using mAb 9A7γ).
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whether precursors of biologically active 1,25(OH)
2
D

3
 or inhibi-

tors of CYP24A1 may be of benefit for the prevention or treat-
ment of BCCs and SCCs.33-35

Carcinogenesis of Basal Cell Carcinoma (BCC) 
and Cutaneous Squamous Cell Carcinoma (SCC): 

Convincing Evidence for Suppression of Skin 
Carcinogenesis by the Vitamin D Endocrine System

In mouse skin, the abnormal activation of two interacting path-
ways critical for epidermal and hair follicle function, β-catenin 
and hedgehog (Hh), leads to epidermal tumors.29-31 The canoni-
cal hedgehog signaling pathway represents a key regulator of 
development in humans and in animals and is present in every 
bilaterian.5,6,30 The pathway is called after its polypeptide ligand 
Hedgehog (Hh), an intercellular signaling molecule discovered in 
fruit flies of the genus Drosophila.5,6,30 Hh is one of Drosophila’s 
segment polarity gene products, involved in creating the molecu-
lar and structural basis of the fly body plan.5,6,30 The molecule 
remains important during many stages of embryogenesis and 
metamorphosis. Sonic hedgehog (SHH) is the best investigated 

monooxidases. Extrarenal activity 
of CYP27B1 has been reported in 
various cell types, including mac-
rophages, keratinocytes, as well as 
prostate and colon cancer cells.3,5,6 
It has been found that modulation 
of these enzymes influences the 
proliferation and differentiation 
status of 1,25(OH)

2
D

3
-sensitive 

cells, benign or neoplastic.3,5,6 Using 
array-competitive genomic hybrid-
ization (CGH), amplification of 
CYP24A1 was detected as a likely 
target oncogene of the amplification 
unit 20q13.2 in breast cancer cell 
lines and tumors.42 It has been spec-
ulated that increased expression of 
CYP24A1 due to gene amplification 
may abrogate vitamin D

3
-mediated 

growth control. Moreover, amplifica-
tion of the CYP27B1 gene has been 
demonstrated in glioblastomas.43

In in vitro investigations, real-
time PCR analysis showed mRNA 
ratios of CYP27B1/GAPDH 
(median: 0.739 in BCCs and 2.02 
in SSCs) and CYP24A1/GAPDH 
(median, 0.0058 in BCCs and 
0.382 in SCCs) gene expression 
in BCCs and SCCs, significantly 
increased as compared with nor-
mal human skin (median, 0.0008; 
0.0000004, respectively).33-35 The 
ratio of CYP27A1/GAPDH was 
only in SCCs significantly increased 
to normal skin (median SCC, 33.00 vs. NS, 0.00004; p < 0.02), 
whereas in BCCs ratio of CYP27A1/GAPDH were not signifi-
cantly altered (median BCCs, 0.17 vs. NS, 0.0166; p = 0.62).33-35

It is not known whether increased expression of the CYP27A1, 
CYP27B1 or CYP24A1 mRNA in NMSC is a result of gene 
amplification or of other mechanisms such as transcriptional 
regulation.33-35 If the increased expression of CYP27B1 results 
in an increased production of biologically active 1,25(OH)

2
D

3
, 

the accumulation of this metabolite should inhibit growth, inva-
sion and metastasis of NMSC.33-35 It can be speculated whether 
increased expression of CYP27A1 and CYP27B1 in NMSC 
may represent a physiological feed-back loop coupled to the 
increased proliferative activity in these tumors. However, one 
has to keep in mind that 1,25(OH)

2
D

3
 may be rapidly metabo-

lized via CYP24A1, whose expression is increased in BCCs and 
SCCs as well.33-35 It is not known whether increased expression of 
CYP27A1, CYP27B1 and CYP24A1 genes results in increased 
or reduced levels of 1,25(OH)

2
D

3
 in NMSC.33-35 Therefore, the 

question of cellular and systemic consequences of the increased 
expression of CYP27A1, CYP27B1 and CYP24A1 in skin 
tumors remains to be clarified. Nevertheless, it can be speculated 

Figure 2. Schematic illustration of the theory suggesting that Ptch regulates Smo by removing oxyster-
ols. Activation of the Hedgehog (Hh)-signaling pathway due to deficiency in the Hh receptor Patched1 
(Ptch) is the crucial molecular defect that causes the formation of BCCs in human skin. Ptch1 possesses 
a sterol sensing domain (SSD), which is important for suppression of the activity of Smoothened (Smo), 
the signal transduction partner of Ptch. A current theory suggests that Ptch regulates Smo by remov-
ing oxysterols from Smo. Ptch acts like a sterol pump and removes oxysterols that have been created 
by 7-dehydrocholesterol reductase. Upon binding of a Hh protein or a mutation in the SSD of Ptch the 
pump is turned off allowing oxysterols to accumulate around Smo. This accumulation of sterols allows 
Smo to become active via GLI signaling or to remain on the cell membrane for a longer period of time.
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vitamin D compounds may represent promising options for pre-
vention and treatment of BCC and that the VDR acts as a tumor 
suppressor in skin.

For SCC development, UV-induced DNA damage is the 
most important environmental risk factor.5,6 UV-R often causes 
gene mutations that may lead to cellular transformation and 
malignancy.5,6,44-48 DNA damage also initiates and promotes 
mechanisms that suppress immune surveillance responsible for 
detecting and eliminating transformed cells.5,6,49,50 UV exposure 
causes different types of DNA lesions that are produced either 
photochemically and directly or indirectly by UV activation of 
various photoreceptors that are able to alter the cellular redox 
equilibrium, thereby generating reactive oxygen species (ROS).5 
ROS induced by UV radiation are able to cause oxidative dam-
age to DNA, and lipid peroxidation.5 Moreover, it has been 
shown that excess levels of nitric oxide (NO) are induced by 
UV-mediated upregulation of nitric oxide synthase,5,51-53 and also 
by UV-A (320–400 nm) mediated decomposition of NO stores 
in nitrosothiols and nitrite.5,54,55 Pathophysiologically elevated 
levels of NO and ROS have been demonstrated to combine to 
form genotoxic NO derivatives such as peroxynitrite that cause 
oxidative and nitrosative modifications to the sugar-phosphate 
scaffold and bases of DNA.5

It is generally acknowledged that mutagenic effects of UV 
radiation represent a hallmark in the carcinogenesis of SCC, 
and that promutagenic pyrimidine dimers are the major forms 
of DNA damage produced directly by UV.5,6,56 The predominant 
type of pyrimidine dimer detected after UV exposure in human 
skin is the thymine-thymine dimer, a cys-syn cyclobutane 
pyrimidine dimer (CPD), while thymine-cytosine, cytosine-
cytosine bipyrimidines, and 6–4 photoproducts are less com-
mon.5,6,57-60 CPDs are generated by the perturbation of the 5–6 
double bonds in two adjacent pyrimidines, followed by abnormal 
covalent binding that connects the 2 pyrimidines by a stable ring 
configuration forming a bipyrimidine product.5,6,61,62 It is well 
accepted that CPD production requires the wavelengths of UV-B 
(290–320 nm).5,6 However there is some evidence for generation 
of thymine dimer by UV-A wavelengths below 330 nm.5,6,60,63-66 
Wavelengths of UV-A are less energetic but considerably more 
abundant (20-fold higher) than UV-B in sunlight, and can pen-
etrate to deeper skin levels.5,67-69 The shorter, more highly ener-
getic UV-C wavelengths below 290 nm can also induce CPDs.5 
However, they are completely absorbed by the stratosphere and 
are therefore not present at the earth’s surface.5 They may only 
become hazardous in the future if stratospheric ozone levels 
should be depleted.5 CPDs can also be produced chemically in 
isolated DNA, probably be via a triplet energy transfer mecha-
nism.5,70,71 This mechanism may explain the production of CPDs 
in skin cells by a nitric oxide donor in the absence of UV,5,72 and 
a decrease in UV-induced CPDs in skin cells treated with inhibi-
tors of nitric oxide synthase.5,73

Another important promutagenic photolesion detected in 
human skin is 8-hydroxy-2'-deoxyguanosine, which is produced 
indirectly by oxidation of the base guanine by peroxynitrite.5,74,75 
Peroxynitrite is also able to cause nitrosative damage to form 
8-nitroguanine,5,76-79 which is converted to a promutagenic abasic 

ligand of the vertebrate pathway.5,6,30 It is now accepted that 
activation of the Hh-signaling pathway due to deficiency in the 
Hh receptor Patched1 (Ptch) is the crucial molecular defect that 
causes the formation of BCCs in human skin.5,6,30 Ptch1 pos-
sesses a sterol sensing domain (SSD), which has been shown to be 
important for suppression of the activity of Smoothened (Smo), 
the signal transduction partner of Ptch.5,6,30 A current theory 
suggests that Ptch regulates Smo by removing oxysterols from 
Smo. Ptch acts like a sterol pump and removes oxysterols that 
have been created by 7-dehydrocholesterol reductase.5,6,30 Upon 
binding of a Hh protein or a mutation in the SSD of Ptch the 
pump is turned off allowing oxysterols to accumulate around 
Smo.5,6,30 This accumulation of sterols allows Smo to become 
active via GLI signaling or to stay on the cell membrane for a 
longer period of time.5,6,30 This hypothesis is supported by the 
presence of a number of small molecule agonists and antagonists 
of the pathway that act on Smo.5,6,30 The binding of SHH relieves 
Smo inhibition, leading to activation of the GLI transcription 
factors: the activators Gli1 and Gli2 and the repressor Gli3.5,6,30 
It has been shown that all elements of the Hh signaling path-
way are elevated in the epidermis and utricles of VDR null mice, 
and that 1,25(OH)

2
D

3
 blocks expression of these elements in 

normal mouse skin.29 In addition the transcriptional activity of 
β-catenin is increased in keratinocytes lacking the VDR.31 Using 
primary cultured human keratinocytes, it was demonstrated that 
1,25(OH)

2
D

3
 suppresses cyclin D1 and Gli1 which are regulated 

by β-catenin/TCF signaling and have a critical role in epider-
mal carcinogenesis.31 Blockage of VDR by siRNA resulted in 
hyperproliferation of keratinocytes, and increased expression 
of cyclin D1 and Gli1.31 Moreover, it was demonstrated that 
1,25(OH)

2
D

3
/VDR directly regulates transcriptional activity of 

β-catenin/TCF signaling using the -catenin reporter TopGlow.31 
Using K14 driven tamoxifen-induced cre recombinase to delete 
both VDR and β-catenin in keratinocytes of mice following the 
first hair follicle cycle, it was found that ablation of epidermal 
specific β-catenin cannot rescue VDR null mice from UVB-
induced skin tumor formation.31 Moreover, convincing evidence 
indicates the Ptch-dependent secretion of a vitamin D

3
-related 

compound, which acts as an endogenous inhibitor of Hh sig-
naling by blocking the activity of Smo, the signal transduction 
partner of Ptch.30 It has been suggested that this substance is 
lacking in Ptch-deficient tumor cells, which in turn may result in 
activation of Hh-signaling.30 It has been demonstrated that the 
application of 1,25(OH)

2
D

3
 inhibits proliferation and growth of 

BCC in Ptch mutant mice in vitro and in vivo.30 This effect is 
associated with activation of VDR and induction of BCC differ-
entiation.30 In addition, it was shown that 1,25(OH)

2
D

3
 inhibits 

Hh signaling at the level of Smo in a VDR-independent man-
ner.30 The concomitant antiproliferative effects of 1,25(OH)

2
D

3
 

on BCC growth were shown to be stronger than those of the 
Hh-specific inhibitor cyclopamine, even though the latter more 
efficiently inhibits Hh signaling.30 In conclusion, there is con-
vincing evidence that exogenous supply of 1,25(OH)

2
D

3
 controls 

the activity of 3 independent pathways, Hh, β-catenin/TCF 
and VDR signaling, which are relevant for tumorigenesis and 
treatment of BCC. These data strongly support the concept that 
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been demonstrated to be photoprotective.5,6,89-93 In these stud-
ies, MT mRNA expression was shown to be clearly induced by 
1,25(OH)

2
D.6

The anti-apoptotic effect of 1,25(OH)
2
D in keratinocytes 

was confirmed, using cisplatin and doxorubicin as apoptotic trig-
gers.6,89-93 In that study, it was demonstrated that 1,25(OH)

2
D 

activated two independent survival pathways in keratinocytes: 
the MEK/extracellular signal regulated kinase (ERK) and 
the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway.6,89-93 
Activation of ERK and Akt by 1,25(OH)

2
D was transient, 

required a minimal dose of 10−9 mol/L and could be blocked 
by actinomycin D and cycloheximide.6 Moreover, inhibition of 
Akt or ERK activity with a PI-3K inhibitor (LY294002) or MEK 
inhibitors (PD98059, UO126) respectively, partially or totally 
suppressed the anti-apoptotic capacity of 1,25(OH)

2
D.6 Finally, 

1,25(OH)
2
D modulates the expression of different apoptosis 

regulators belonging to the Bcl-2 family.6 It has been shown that 
1,25(OH)

2
D treatment increases levels of the anti-apoptotic pro-

tein Bcl-2 and decreases levels of the pro-apoptotic proteins Bax 
and Bad in a time- and dose-dependent way.6,89-93 The authors of 
these investigations concluded that 1,25(OH)

2
D protects kerati-

nocytes against apoptosis by activating the MEK/ERK and the 
PI-3K/Akt survival pathways and by increasing the Bcl-2 to Bax 
and Bad ratio.6,89-93

Moreover, it has been demonstrated that 1,25(OH)
2
D protects 

primary human keratinocytes against the UV-B-induced genera-
tion of CPDs.5,6,89-95 In some studies, this protection required 
pharmacologic doses of 1,25(OH)

2
D and an incubation period 

of at least 8 h before UV-B-irradiation.5,6 CPDs are primarily 
eleminated by the nucleotide excision repair (NER) pathway that 
has a relatively long half-life of 7–12 h.5,6,94-97 Individuals with 
the inherited disorder xeroderma pigmentosum bear a defect in 
one of the key enzymes of NER pathway and are highly prone to 
UV-induced skin carcinogenesis.5,6,98,99 Oxidative DNA damage 
is repaired by the more rapid alternate base excision repair (BER) 
pathway.5,6,100-104 However, the repair enzyme human 8-oxogua-
nine-DNA glycolase 1 is less abundant in the basal layers than 
the upper layers of the human epidermis, which indicates that 
repair of oxidative damage in the dividing keratinocytes of the 
epidermis is less efficient.5,104

The tumor suppressor protein p53, representing a key regula-
tor of the DNA damage response as mentioned above, is acti-
vated by DNA damage.5,6,66,75,105,106 Physiological doses of UV-A 
and UV-B can induce inactivating mutations in the p53 gene. 
Mutations in the tumor suppressor p53 in engineered human skin 
were found to be predominantly UV-A finger print mutations 
induced by oxidative damage located in the basal layer of the epi-
dermis.5,75 A positive association between mutations in the tumor 
suppressor p53 gene in UV-damaged cells in mouse and human 
skin before skin tumors appear, provides evidence for involve-
ment in skin carcinogenesis.5,75 Activation of p53 is achieved by 
post-translational phosphorylations and acetylations on mul-
tiple sites.5 These modifications enhance p53 accumulation by 
inhibiting degradation by negative regulators including MDM2, 
and/or by increasing its transcription.5 These mechanisms result 
in nuclear accumulation of p53 that reaches maximum levels 

site within a few hours. DNA strand breaks have also been shown 
to be induced by nitrosation of primary amines by another NO 
derivative, nitrous anhydride.5,80

Photolesions resistant to DNA repair are able to cause deleteri-
ous gene mutations that form either by deletion, base mispairing, 
or substitutions during DNA replication when adenine is inserted 
as the default base.5 Mutations that affect cellular function can 
promote skin carcinogenesis.5,6 Sequence alterations such as C to 
T transitions are associated with bipyrimidine sites, and corre-
late with mutations found in the p53 tumor suppressor gene in 
various types of tumors including skin cancers and their precur-
sors.5,6,81-84 G to T transversions are associated with 8-hydroxy-
2'-deoxyguanosine5,85 and occur in isolated DNA exposed to 
peroxynitrite.5,86

UV-Induced DNA Damage Response: Modulation by 
Vitamin D Signaling

In order to protect genome integrity, cells respond to DNA dam-
age by inducing signal transduction pathways that cause cell 
cycle arrest before the affected cells can replicate.5 This enables 
either DNA-repair or the elimination of severely damaged cells 
by apoptosis.5,6,87,88

Apoptosis, representing a mode of programmed cell death, is 
induced following UV-B-irradiation when cellular damage is too 
severe to be repaired.5,6,89-93 It has convincingly been shown that 
the biologically active vitamin D metabolite 1,25(OH)

2
D pro-

tects human skin cells from UV-induced cell death and apopto-
sis.5,6,89-93 In these studies, cytoprotective effects of 1,25(OH)

2
D 

on UV-B-irradiated keratinocytes were seen morphologically and 
using a colorimetric cell survival assay.5,6,89-93 Moreover, using an 
ELISA that detects DNA-fragmentation, it was shown that pre-
treatment with 1,25(OH)

2
D suppresses UV-B-induced apoptosis 

by 55–70%.5,6,89-93 This suppression requires pharmacological 
concentrations of 1,25(OH)

2
D and a preincubation period of sev-

eral hours.5,6,89-93 In addition, it was demonstrated that pretreat-
ment with 1,25(OH)

2
D also inhibits mitochondrial cytochrome 

C release, a hallmark event of UV-B-induced apoptosis.5,6,89-93

Furthermore, it was demonstrated that 1,25(OH)
2
D 

reduces two important mediators of the UV-response, namely, 
c-Jun-NH

2
-terminal kinase (JNK) activation and interleukin-6 

(IL-6) production.5,6,89-93 As shown by western blotting, pre-
treatment of keratinocytes with 1,25(OH)

2
D diminishes UV-B-

stimulated JNK activation by more than 30%. Furthermore, 
1,25(OH)

2
D treatment reduces the UV-B-induced IL-6 mRNA 

expression and protein secretion by 75–90%. Analyzing the cleav-
age of PARP further supported these observations. Pretreatment 
of keratinocytes with 1,25(OH)

2
D inhibits efficiently, but not 

completely, this UV-B-induced PARP-cleavage.5,6,89-93

Metallothionein (MT)-induction may be relevant for the pho-
toprotective effects of 1,25(OH)

2
D. MT acts as a radical scaven-

ger in oxygen-mediated UV-B-injury.5,6,89-93 MTs are a class of 
small cysteine-rich proteins that bind and exchange heavy metal 
ions but also have clear scavenging properties for ROS.5,6,89-93 
Part of the UVB-induced damage to cells occurs through the 
formation of ROS and antioxidative agents such as MT have 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Dermato-Endocrinology	 45

There are other mediators of photoimmune suppression which 
include the release of pro-inflammatory cytokines that inhibit 
the antigen presenting function of Langerhan’s cells, resulting in 
decreased T cell differentiation and activation and the suppres-
sion of T-cell-mediated responses.5,119,120 Cis-urocanic acid formed 
by UV isomerisation of the photoreceptor trans-urocanic acid 
located in the outermost layers of skin also inhibits the antigen 
propensity of Langerhan’s cells.5,121,122 Depletion of Langerhan’s 
cells in the skin by DNA damage and oxidative stress reduces their 
antigen-presenting propensity.5,123 Free radicals generated by UV 
contribute to immune suppression by releasing platelet-activating 
factor (PAF) from epidermal cells.5 The peroxidation of lipids by 
peroxynitrite and PAF is implicated in prostaglandin and cyto-
kine production and release, which in turn modulate regulatory T 
cells (Tregs) suppressing immune responses at distant sites.5,6,119,124 
Tregs are involved in immune homeostasis by maintaining the 
balance between immunosuppression and autoimmunity, and 
reside in skin as well as skin draining lymph nodes5,120 and there-
fore could also be subjected to DNA damage and oxidative stress.

Antioxidant treatment has been shown to abolish immune 
suppression mediated by the lipid peroxidation pathway in irra-
diated mice.5,125 UV activation of Src, located on the inner surface 
of the keratinocyte plasma membrane, triggers signaling cascades 
that activate the transcription factors AP-1 and NF-κB that 
regulate immune regulatory cytokines, which is also blocked by 
antioxidant treatment.5,119,126,127 Activation of an alternate com-
plement pathway has also been implicated in inflammatory and 
immune modulating activities.5,128,129

Both UVB and UVA components of sunlight are immuno-
suppressive in mice and humans,5,6,130-133 while certain wave-
lengths of UVA have been shown to have a protective effect 
against UVB-induced immunosuppression in mice.5,134 However 
there is some conflicting data from studies in mice and humans 
regarding the particular wavelengths of UVA and their immuno-
modulatory effects.5,133-135

Vitamin D compounds exert potent effects on the immune 
system and modulate the UV-induced immune response.5,6 The 
cytokine IL-6 represents an important mediator of the sunburn 
reaction, of UV-B-dependent immune suppression, and has been 
implicated in the tumorigenesis of BCC.5,6,89-93 UV-B-irradiation 
strongly induces IL-6 mRNA and release of IL-6 protein by 
human keratinocytes.5,6,89-93 In cultured human keratinocytes, 
1,25(OH)

2
D treatment reduces the UV-B-induced IL-6 mRNA 

expression and protein secretion by 75–90%.6 Moreover, vitamin 
D compounds exert potent effects on the UV-induced immune 
response via many other mechanisms that include modulation of 
expression and function of regulatory T-cells.3,6

Summary

The data presented in this review provide convincing evidence 
that the VDES is of high importance for prevention (Tables 1 
and 2) and treatment of NMSC. Besides a sufficient vitamin 
D status, the molecular basis that underlies these preventive 
effects of vitamin D compounds is the expression and func-
tional integrity of the VDR and other key components of the 

12 h after UV radiation.5,107 p53 regulates the transcription of 
multiple genes that control cell growth,5,93 nucleotide excision 
repair5,6,108,109 and base excision repair5,102 pathways, as well as pro- 
or anti-apoptotic pathways.5,6,110 p53 mediates the gene transcrip-
tion of GADD45, that assists DNA repair by binding to DNA, 
increasing accessibility to repair enzymes.5,111 DNA repair has 
been shown to be blocked in cells transfected with a dominant 
negative p53 construct,5,112 and early onset tumor formation is 
increased in homozygote p53 knockout mice.5,113 The gene for the 
DNA strand sensor protein kinase (ATM) acts by phosphorylat-
ing p53 at serine 15 and is inactivated in patients with the genetic 
disorder ataxia telangiectasia.5 These patients suffer from genome 
instability, immunodeficiency and cancer.5,114-116 Inactivation of 
the p53 phosphorylation site at serine 392 represents a muta-
tional hotspot of the p53 gene, resulting from UV-induced DNA 
damage.5 A knock-in mutation in mice that blocks the phos-
phorylation of serine 398 (the murine equivalent of human ser-
ine 392) has been demonstrated to promote photocarcinogenesis 
in mice.5,117 UV-R has been shown to increase p53 expression in 
human skin cells and concurrent treatment with 1,25(OH)

2
D 

further enhanced this effect several fold, at 3 h and 6 h after 
UV-R.5,92 Combined with previously reported lower nitrite lev-
els in the presence of 1,25(OH)

2
D, it has been speculated that 

this increased p53 expression may favor DNA repair over apopto-
sis.5,92,93 Additionally, it has convincingly been shown that topical 
application of 1,25(OH)

2
D or its analog QW suppressed solar 

simulated UV (SSUVR)-induced pyrimidine dimers in the epi-
dermis of irradiated hairless Skh:HR1 mice, measured 24 h after 
irradiation.5,92,93 Furthermore, UV-induced immunosuppression 
in the mice can be markedly reduced by topical application of 
either 1,25(OH)

2
D or QW.5,92,93 Taken these data together, a pro-

tective effect of vitamin D compounds against UV-B-induced 
photodamage was convincingly shown in vitro and in vivo.5,6 
It is tempting to speculate that the UV-B-induced cutaneous 
production of vitamin D may represent an evolutionary highly 
conserved feed-back mechanism that protects the skin from the 
hazardous effects of solar UV-radiation.6

UV-Induced Immune Suppression

Cutaneous immune responses that would normally detect and 
prevent the development of tumors in skin are suppressed by 
low doses of UV-R.5 This was demonstrated by the progressive 
growth of tumors transplanted into irradiated mice, while the 
tumors were rejected in unirradiated mice.5,118 Pyrimidine dimers 
are important mediators of photoimmune suppression.5,49,50 This 
was first demonstrated in the opossum where pyrimidine dimers 
are normally repaired in the presence of visible light by photoly-
ase, an endogenous photoreactivating enzyme, which is present 
in most living organisms, but lost in mammals.5 A reduction in 
pyrimidine dimers correlated with a reduction in photoimmune 
suppression in the opossum after treatment with visible light 
immediately after UV irradiation.5,49 Photommune suppression 
was also reduced in irradiated mice after reduction of CPDs by 
application of encapsulated T4 endonuclease, the specific repair 
enzyme for pyrimidine dimers.5,50
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observational and interventional studies are needed to define the 
efficacy and safety of vitamin D compounds in the prevention 
and treatment of NMSC.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

VDES. While some of the complex interactions of the VDES 
with other signaling pathways that contribute to skin carcino-
genesis (e.g., hedgehog signaling) have been identified, future 
laboratory investigations will address unanswered questions and 
will increase our knowledge about the impact of the VDES on 
skin carcinogenesis. Most importantly, additional well-designed 

Table 1. The role of the VDES for BCC prevention

 BCC risk
evidence

convincing presumable possible insufficient

25(OH)D serum concentration

Clinical studies
↓ (results difficult to interprete due 

to UV radiation as confounder)

Animal studies ↓

In vitro investigations
↓ (via regulation of 

hedgehog signaling)

VDR polymorphisms (SNPs)

Clinical studies ↓ or ↑

Animal studies Ø (lack of data)

In vitro investigations Ø (lack of data)

Polymorphisms (SNPs) in other VDES-related genes 
(CYP27A1, CYP27B1, CYP24A1, CYP2R1, GC)

Clinical studies ↓ or ↑ (GC) Ø (lack of data)

Animal studies Ø (lack of data)

In vitro investigations Ø (lack of data)

↓ Reduction of BCC risk resulting from substitution or treatment with vitamin D compounds (e.g., in interventional studies), from increasing 25(OH)
D-serum concentration, from association with SNPs (in observational studies), or from in vitro investigations; ↑ Increase of BCC risk resulting from sub-
stitution or treatment with vitamin D compounds (e.g., in interventional studies), from increasing 25(OH)D-serum concentration, or from association 
with SNPs (in observational studies); ○ no association; Ø insufficient evidence.
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